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1. Motivation
The crystallographic refinement process relies on form factors which describe the
scattering power of an atom. This scattering power is proportional to the Fourier
transform of the electron density (with the atomic location at the origin).

fj =

∫
R3

ρj(x)e2πih·xdx (1)

This has generally been taken from spherically symmetric representations of
atoms, but this is not necessary – with newer methods of computational quan-
tum mechanical calculations or other modelling, they can be calculated more
accurately for a specific structure.

2. Theory
Whilst much of the refinement process remains the same as with the spherical
assumption, some parts require adjustment:

Assumption 1: fj is a function of the size of h, |h|
For spherical electron densities ρj(x) = ρj(|x|), fj(h) = fj(|h|). This is used to
simplify the refinement process by collation of identical fj . This cannot be used
for non-spherical distributions.

Assumption 2: fj is a real number
In the spherical case, symmetry causes complex components of fj to cancel out.
In the non-spherical case, this is not so, and fj can be a complex number. For re-
finement software, this especially can require adjustment to deal with as complex
values do not typically appear until later.

Assumption 3: Atoms of the same type have identical fj
Atoms of the same type are no longer assumed to have identical electron den-
sity distributions, so each atom requires its own form factors calculated from its
electron density, affected highly by its neighbouring atoms.

Simplification 1: Symmetries (and twins) still have relations
In the spherical case, fj for an atom and its symmetry equivalents are identical.
For symmetry equivalent atoms related by the rotation R, their non-spherical
form factors are related by f1(h) = f2(hR). Translation components are dealt
with identically to the spherical case. For twins, the peaks remain at the same
integer points, so the transformations as used in the spherical case still hold.

Simplification 2: We require only values at integer h

The spherical form factors are approximated by equations describing their value
for any |h| ∈ R. It is the case that constructive interference can only occur for
integer-values h, leading to the simplification of calculation that fj need only be
calculated at these integer points.

Complication 1: A value for every atom, for every h ∈ Z3

Non-spherical form factors do not typically give rise to a simple analytical solu-
tion, and the form factors must be calculated individually for every h with a Fo
(or a symmetry equivalent Fo) recorded, for each atom. This is much more infor-
mation than with the prior form factors, and unique to the specific crystal being
worked on, so this information must be recalculated and potentially transferred
to refinement software. Olex2 uses a .tsc file to transfer this information.

Complication 2: Recalculate frequently
Non-spherical form factors are derived from the calculated electron density. Any
change to the positions of atoms within the molecule will cause a shift to this
electron density, resulting in a shift to these form factors. Thus, the calculated
form factors are only entirely accurate when there is no shift (i.e. when it has
settled), and they should certainly have been calculated from the settled model.

4. Conclusion
The adjustments required in refinement, subject to the verification of the assump-
tions listed in ‘3. Further Considerations’, are relatively easy to implement into
the standard crystallographic process. It can be more difficult to make these ad-
justments within written software if code optimisation has been done which takes
advantage of spherical rules which no longer apply.

Stewart [1] said “By necessity, if not by choice, crystallographers have treated
bonded atoms as point nuclei with a spherically symmetrical distribution of elec-
tron charge” when carrying out similar processes for bonded hydrogen atoms. We
may now have passed beyond this necessity, but the re-evaluation of choice is only
just beginning.

3. Further Considerations
The refinement process contains deductions and assumptions which require re-
consideration for non-spherical form factors.

The refinement process relies on the use of the first derivative of Fc with regards
to every refinement parameter. This arises from a Taylor expansion, along with
the assumption that any higher order derivative (multiplied by its respective ∆xs)
is much less than ∂Fc/∂x∆x, which will hold for sufficiently small ∆x.

Through the fact that Fc(h) =
∑N
j=1 fj(h)Gj(h), with Gj representing consider-

ations of location and ADPs as in the spherical case, this can be divided into the
derivatives of fj(h)Gj(h). In the spherical case, fj is constant with respect to the
refinement parameters, so this derivative results in fj(h)×∂Gj(h)/∂x. However,
in the non-spherical case, there is an extra term ∂fj(h)/∂x×Gj(h). If this term
is small compared to the first, it can be neglected, and we take it to be 0 to allow
the refinement process to match the spherical case. If this is not valid, it would
have a significant impact on the sparse matrices and optimisations thereof within
the refinement process, but so long as an estimation of ∂fj(h)/∂x could be made,
it could be accounted for.
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Aside: Hirshfeld Partitioning

One example of splitting an electron density calculation into individual atom
densities is the process of Hirshfeld Partitioning [3].

For this process, one requires both an electron density function for the en-
tire structure (this can be simply defined across the asymmetric unit) and the
previously-used spherical approximations. Then these are adjusted by a weight-
ing scheme wA(r) =

ρ0A(r−rA)∑
B ρ0B(r−rB)

(where B runs over all atoms, A represents
the atom under consideration, and ρ0 is the spherical electron density), taking
ρA(r) = wA(r)ρmol(r) as the ‘true’ electron density of the atom.

In the images below, we show this process for a simple two-atom structure.

We begin with a single standard atom A at rA with
ρ0A(· − rA)

We bring in a second non-interacting atom C, and
the resultant density ρ0A(· − rA) + ρ0C(· − rC).

We then consider this in comparison to the calculated
density ρmol. Note that this has a higher density
between the atoms, and lower on their ‘centers’.

We finally adjust the electron density of the chosen
atom such that all atomic densities sum to the
calculated density, whilst remaining proportionally
the same in contribution as the independent atom
prediction,

ρA(r) =
ρ0A(r− rA)∑
B ρ

0
B(r− rB)

ρmol(r)

.This results in an atomic density function which better models the electron density
around the atom.

This new atomic function can then have the transform (1) applied to generate its
form factor, which can then be used in the refinement process.


